The researchers developed and validated a paralanguage classifier (called PARA) using social media data from over 1.2 million Twitter, YouTube, and Instagram posts. Whereas the currently popular text analysis tools explore verbal aspects of what is being conveyed, this research focuses on the subtleties of how the text is written. “Textual paralanguage” (TPL) is the measure of nonverbal characteristics of a text that extend beyond the literal meanings of words and parts of speech. The PARA software provides output variables at a superordinate sensory level, such as auditory TPL (which includes elements denoting tone, rhythm, stress, emphasis, and tempo of the text), tactile TPL (which includes tactile emojis and emoticons), visual TPL (bodily/nonbodily emoticons/emojis), and aggregate variables (emoji count, emoticons index, and TPL index). The PARA tool uses a rule-based algorithm to analyze textual data.
Implications for Marketing Managers
A: In this work, we developed a text analysis tool called PARA to identify nonverbal communication cues in text. We realized that many text tools focus on what is said—the verbal content of a message or the words themselves. What makes PARA different is that it identifies 19 features of nonverbal parts of speech—focusing on how something is said—or what’s called textual paralanguage. Simply put, PARA has been built on a set of rules as well as dictionaries that identify keywords.
Feedback forums are rich sources of customers’ opinions and emotions. By applying PARA to measure the intensity of sentiment valence on these platforms, managers can prioritize responses and devise better communication strategies for faster and more effective resolution. Moreover, PARA can also help brands to convey persuasive messages with nonverbal cues that enhance the appeal of their marketing content. Social media is not only a powerful tool for firms but also for individuals such as artists, celebrities, and influencers who seek to attract consumer engagement. PARA can enable such emerging brands to create captivating content with nonverbal cues that inspire people to interact. As the authors suggest, PARA can also serve as a valuable tool for influencer vetting to ensure that the content produced by influencers is consistent with brand communication.
Person A: “Why did the bicycle fall over? 🚲😉”
A: PARA is a linguistic tool designed primarily to detect and classify textual paralanguage. The paralinguistic features it detects include not only emojis but also alphanumeric (keyboard-based) nonverbal cues, with 15 features that can be operationalized using text alone. In our article, we demonstrate that disregarding these textual paralanguage features can result in missing significant explanatory and predictive power when analyzing sentiment valence and intensity. This suggests that PARA is an indispensable tool for sentiment analysis, regardless of whether the data comprises only text, only emojis, or a combination of the two. Moreover, when used in conjunction with traditional sentiment methods such as VADER or LIWC, PARA can enhance the accuracy of sentiment analysis. This is because it captures variations in sentiments that might be overlooked when relying solely on text-based verbal cues. Of course, with any methodology, there are limitations. PARA uses human-generated rules and dictionaries based on training data to detect textual paralanguage. Such rule-based detection may not be exhaustive, and there are likely rare and nuanced forms of paralanguage that remain undetected, which could be further investigated in conjunction with generative AI. In addition, the features detected by PARA are rooted in the English language. There are many future research opportunities to expand PARA to detect nonverbal features in other languages.
Person B: “Hmm… I’m not sure, why did it fall over? 🤔”
In this instance, while PARA would not directly recognize the wordplay (‘two-tired’), its ability to capture textual paralanguage cues (e.g., emojis, emphasis, vocalizations, etc.) helps inform us about the playful, joking context in which the wordplay is used, enhancing the holistic understanding of the text.
A: In our study, we focus primarily on sentiment valence (i.e., the positivity/negativity of a message) and sentiment intensity (i.e., the degree of positivity/negativity of a message). PARA is not designed to detect specific emotions or make emotional inferences from emojis. In other words, our approach allows us to identify the influence of nonverbal cues across various contexts and social media platforms, independent of the specific emotion being expressed.
We interviewed the authors to learn more about this exciting project:
“All language is but a poor translation”
Franz Kafka
Sakshi Korde is a doctoral student in marketing, Wilfred Laurier University, Canada.